MATHS区

Maths - No Problem!

Calculation Policy

Table of Contents

Introduction 1
Addition
Calculation Policy 2
Reception 2
Year 1 6
Year 2 9
Year 3 11
Year 4 14
Year 5 18
Year 6 21
SubtractionCalculation Policy 23
Reception 23
Year 1 26
Year 2 29
Year 3 31
Year 4 34
Year 5 38
Year 6 42
MultiplicationCalculation Policy 4343
Reception 43
Year 1 44
Year 2 47
Year 3 50
Year 4 54
Year 5 58
Year 6 64
DivisionCalculation Policy 68
Reception 68
Year 1 69
Year 2 71
Year 3 74
Year 4 75
Year 5 79
Year 6 82

Introduction

Maths - No Problem! materials use real-world contexts to help pupils understand the importance of mathematics in their everyday lives.

The progression of calculation skills, focusing on addition, subtraction, multiplication and division is developed using a Concrete Pictorial Abstract (CPA) approach and delivered through problem solving.

Key mathematical ideas are reinforced using Bruner's spiral curriculum: a teaching approach in which each subject or skill area is revisited in intervals at a more sophisticated level each time.

The Maths — No Problem! Calculation Policy guides practitioners through a clear progression of key skills and representations at each year group.

Addition Calculation Policy

Year 1

Addition Calculation Policy

Year 2

| Year | Topic/Strand |
| :--- | :--- | :--- | :--- |

3 ones +8 ones $=11$ ones 11 ones $=1$ ten and 1 one

Formal Written
Method

4 tens +1 ten $=5$ tens
$40+10=50$
$43+8=51$
There are 51 bottles of water in total.

This is a procedural method that relies on a pupil's conceptual understanding of addition.
This begins without renaming and progresses to the renaming of 10 ones into 1 ten. Pupils understand that at this stage, they start with the addition of the ones before they add the tens. This method is supported with base 10 block representation.

The formal written method is always accompanied by a written equation to ensure that the relationship between the representations is made.

Pupils use their understanding of adding the same noun when adding fractions through a written sentence. Fractions with the same denominator are added using a '[] and [] make []' structure.

Addition Calculation Policy

Year 3

This procedural method progresses from the renaming of 10 ones into 1 ten to include the renaming of 10 tens to 1 hundred. The procedure remains unchanged from Year 2.

Pupils understand that at this stage, they start with the addition of the ones, then the tens, then finally the hundreds.

This method is supported with base 10 block representation. The formal written method is always accompanied by a written equation to ensure that the relationship between the representations is made

Pupils are given the opportunity to further develop their number sense by using a 'make 100' strategy with numbers that are 'near hundreds'

They use their part-whole understanding to rename a given number to make 100 . For example, $498+50$ can be renamed as $498+2+48$ Pupils add 2 to 498 to make 500, then add the remaining 48.

Addition Calculation Policy

Place-value counters are used to represent addition situations. This transition relies on pupils understanding the value of each counter without being able to count its physical attributes.

Pupils will have the opportunity to rename 10 counters of the same value to 1 counter with a value 10 times greater and vice versa. The idea of composing and decomposing at a rate of 10 should be well understood at this stage.

Year	Topic/Strand	Representation	Key Idea
Year 4	Formal Written Method		Pupils will have the opportunity to use a long and short version of this procedural method. In the long representation, the sum of adding each place is shown in its entirety before being added to find the final sum. In the short representation, the sum of each place is shown as part of the total sum and as a small number added to an existing place when a ten of one place is made. The procedure remains unchanged from Year 2.
Year 4	Estimating the Sum	Start by estimating. $\begin{aligned} & 4188 \approx 4200 \\ & 3245 \approx 3200 \\ & 4200+3200=7400 \end{aligned}$ The answer will be about 7400 .	Estimation is introduced as an approach to start a calculation. Estimation is a skill that helps develop number sense. Pupils are expected to be able to decide if an answer is reasonable. Beginning a calculation with estimation is developed during the addition chapter.
Year 4	Making 10 and Making 100	make 10 $\begin{aligned} & 4072+8= \\ & 4072+8=4070+10 \\ & 4072+8=4080 \end{aligned}$ make 100 $\begin{aligned} 97+5213 & = \\ 97+5213 & =100+5210 \\ & =5310 \end{aligned}$	A mental method that involves renaming numbers to make 10 or 100 before finding the sum. Pupils develop their number sense by recognising numbers close to a ten or close to a hundred and renaming a number in the equation to bring a number to the nearest 10 or nearest 100 without having to compensate the sum.

(1) Lulu used this method to find Lulu used this method to find
the sum of 3067 and 9 .
$\left.\begin{array}{l}3067+10=3077 \\ 3067+9=3076\end{array}\right) 1$ less

2 Ravi used this method to find the sum of 98 and 5262.
$100+5262=5362$
$98+5262=5360 \prec^{2 \text { less }}$

I know adding 98 is 2 less than adding 100

A mental method that uses a similar equation in which a number in the original calculation is shown to the nearest 10 or 100 before carrying out the calculation. This calculation is used to help find the sum of the original equation.

Pupils use their understanding of adding the same noun when adding fractions with the same denominator. The adding of fractions uses equations and is supported through pictorial representation.

Pupils use their understanding of equivalence to ensure denominators are the same before carrying out the addition.

Addition Calculation Policy

Place-value counters are used to represent the formal written method.

The procedure remains unchanged from Year 2.

Pupils use their understanding of adding the same noun when adding fractions with the same denominator. The adding of fractions uses equations and is supported through pictorial representation.

Pupils use their understanding of equivalence to ensure denominators are the same before carrying out the addition.

Pupils use their understanding of adding the same nouns when adding tenths. Tenths are represented using bar models, written words and equations.

The procedure for adding decimals using a formal written method is the same as when adding whole numbers, but attention needs to be given to the decimal point. The decimal point does not represent a place but separates the whole from the fractional part of a number. Careful alignment is needed when adding decimal numbers using a formal written method.

Addition Calculation Policy

Year 6

Representation

Key Idea

First, carry out all the operations in (). Next, perform all the multiplication and division. Then, calculate all the addition and subtraction.

Calculate.
(a) $(1+3) \times 5-7=$
(b) $1+(3 \times 5)-7=$ -
(c) $(1+3) \times(7-5)=$

Pupils utilise the previous addition skills within mixed operation equations. Addition is carried out after multiplication and division. If only addition and subtraction are present in an equation, pupils work from left to right.

Adding
Fractions

$$
\frac{1}{2}+\frac{1}{3}=\frac{5}{6}
$$

Pupils use their understanding of adding the same noun when adding fractions with the same and different denominators.

Pupils use their understanding of equivalence to ensure the nouns and the denominators are the same before the calculation is completed.

Pupils use their understanding of adding the same nouns when adding decimal numbers. They use place-value knowledge and composing and decomposing at a rate of 10 when adding decimals. The procedure remains the same as adding whole numbers.

Subtraction Calculation Policy

Year 1

This is a mathematical structure that underpins subtraction situations. Numbers can be understood in terms of their parts; understanding that the parts are part of a larger collection.

Pupils develop an understanding of the parts and the whole within an equation

Pupils develop automatic recall of number bonds to 10 . This can be shown using a ten frame, a number bond diagram and written as an equation. This understanding can be related to subtracting tens, hundreds and so on when used with a sound understanding of place value.

Pupils are first introduced to a linear number system through the number track. This is a precursor to the number line.

Pupils may benefit from placing items on the number track as they count and subtract before moving on to use the more abstract number line.

Pupils move from a number track to a number line, starting from zero and having marked increments of 1 .
The use of the number line is further developed when counting back starts from a given number relying on pupils' ability to locate and count back from a given number

Pupils use their part-whole understanding to rename a number into its component parts in order to subtract from 10 within an equation.

There are 5 people left at the bus stop.

Subtraction Calculation Policy

Year	Topic/Strand	Representation	Key Idea
Year 2	Part-Part- Whole	$\begin{aligned} 7-5 & =2 \\ 37-5 & =32 \end{aligned}$	This is a mathematical structure that underpins subtraction situations. Numbers can be understood in terms of their parts; understanding that the parts are part of a larger collection. Pupils develop an understanding of the parts and the whole within an equation.
Year 2	Counting Back Using a Number Line	$37-5=32$	The use of the number line is further developed when counting back starts from a given number, relying on pupils' ability to locate and count back from a given number, including starting from a 2-digit number. Initially a 1-digit number is subtracted from a 2-digit number, then this progresses to a number line shown with intervals of 10 when subtracting 2-digit numbers that do not have any ones.
Year 2	Base 10 Blocks	\square to help you. $5 \text { ones }-1 \text { one }=4 \text { ones }$ $5-1=4$	The use of base 10 blocks provides a representation of the place value primarily of 2-digit numbers. This representation is related to the formal written method but also encourages pupils to use their understanding of subtracting the same noun to subtract 2 -digit numbers. For example, 50-30 can be understood as 5 tens -3 tens. The difference between the numbers is 20 or 2 tens. An understanding of place value will support subtraction as well as addition, multiplication and division.

5 tens -4 tens $=1$ ten
$50-40=10$
$58-40=18$

This is a procedural method that relies on a pupil's conceptual understanding of subtraction.

Initially, this begins without renaming and progresses to the renaming of 1 ten into 10 ones. Pupils understand that at this stage, they start with the subtraction of the ones before they subtract the tens. This method is supported with base 10 block representation.

The formal written method is always accompanied by a written equation to ensure that the relationship between the representations are made.

Pupils develop an understanding of situations and problems that require subtraction.

Subtraction Calculation Policy

Year 3

Part-Part-

Using a
Number Line

$$
796-600=196
$$

This is a mathematical structure that underpins subtraction situations. Numbers can be understood in terms of their parts; understanding that the parts are part of a larger collection.

Pupils develop an understanding of the parts and the whole within an equation

The use of the number line is further developed when counting back starts from a given number relying on pupils' ability to locate and count back from a given number, including starting from a 3-digit number.

Initially a 1-digit number is subtracted from a 3-digit number, then this progresses to a number line shown with intervals of 1 , then 10 and then progressing to 100.

The use of base 10 blocks provides a representation of the place value of 3 -digit numbers. This representation is related to the formal written method but also encourages pupils to use their understanding of subtracting the same noun to subtract from 3-digit numbers. For example, 700 400 can be understood as 7 hundreds - 4 hundreds. The difference between these numbers is 300 or 3 hundreds. Progression is made by subtracting ones, then tens and finally hundreds before the subtraction of all 3 places is undertaken. An understanding of place value will support subtraction as well as addition, multiplication and division.

This procedural method progresses from the renaming of 10 ones into 1 ten to include the renaming of 10 tens to 1 hundred when necessary. The procedure itself remains unchanged from Year 2.
Pupils understand that at this stage, they start with the subtraction of the ones, then the tens, then finally the hundreds.

This method is supported with base 10 block representation. The formal written method is always accompanied by a written equation to ensure that the relationship between the representations are made.

Subtraction Calculation Policy

Year 4

This is a mathematical structure that underpins subtraction situations. Numbers can be understood in terms of their parts; understanding that the parts are part of a larger collection.

Pupils develop an understanding of the parts and the whole within an equation

What is the difference between 432 and $119 ?$

There are not enough ones. Rename 1 ten as 10 ones.

Place-value counters are used to represent subtraction situations. This transition from base 10 blocks relies on pupils understanding the value of each counter without being able to count its physical attributes.

Pupils will have the opportunity to rename 1 counter to 10 counters with a value 10 times smaller in order to carry out a formal written method. The idea of decomposing at a rate of 10 should be well understood at this stage.

Pupils will use the formal written method initially without renaming, and then move to subtraction that requires renaming.

The procedure remains the same as learned in Year 3 but the numbers increase to include 4-digit numbers being subtracted from 4-digit numbers.

Year

Using Addition

to Check

Subtraction

- 1 subr

Step 1 Subtract the ones, 18 ones -9 ones $=9$ ones
Step 2 Subtract the tens. 3 tens -3 tens $=0$ tens

Step 3 Subtract the hundreds. 3 hundreds - 1 hundred $=2$ hundreds

Step 4 Subtract the thousands. 5 thousands -4 thousands $=1$ thousand
$5348-4139=1209$

Pupils are encouraged to check subtraction calculations by adding the parts (the subtrahend and the difference) to ensure the sum is equal to the whole (the minuend).

Mental subtraction methods include partitioning the minuend to simplify the subtraction calculation. The approach shown is supported by an understanding of number bonds to 10 and to 100 .

Year $4 \quad$ Subtracting
 Fractions

Pupils use their understanding of subtracting the same nouns when subtracting fractions with the same denominator.
The subtraction of fractions or finding the difference between fractions is supported through pictorial representation.

Pupils use their understanding of equivalence to ensure denominators are the same before carrying out the subtractions.

Subtraction Calculation Policy

Pupils use place-value counters to support counting back in thousands to find the difference.

Count back 30000 from 153672.

Pupils count back in thousands and ten thousands, using a number line to show this counting back method.

\downarrow
Rename 1 thousand as 10 hundreds.

Subtract 7 hundreds from 14 hundreds.

$$
\begin{aligned}
& \text { Subtract the thousands. } \\
& 5^{4} 8^{14} 400 \\
& \text { Subtract the ten thousands. } \\
& { }^{4} 5^{14} \\
& \begin{array}{r}
5 \% 400 \\
-13700 \\
\hline
\end{array} \\
& 55400 \\
& \begin{array}{r}
-13700 \\
\hline 1700 \\
\hline
\end{array} \\
& \begin{array}{r}
-13700 \\
\hline 41700
\end{array}
\end{aligned}
$$

Place-value counters are used to represent the formal written method. The procedure to subtract using numbers up to 6 -digits using the formal written method remains the same as when it was first introduced.

Pupils begin at the least value place and work to the left through the places to find the difference.

Renaming takes place when a calculation in a place cannot be done. Again, this procedure is the same as when this was first learned and requires the renaming of the minuend.

The renaming of the minuend is also represented using a number bond, providing the foundation for mental methods that require renaming.

Checking
by Using
Estimation
and Addition
$75241-34658=40583$

Pupils are encouraged to check the reasonableness of their answers by initially finding an estimated difference.

When using estimation to check, pupils initially round to the nearest thousand before calculation.

When using addition to check the difference, pupils add the difference and the subtrahend to check it is equal to the minuend.

Subtracting
Fractions

$1-\frac{1}{6}=\frac{6}{6}-\frac{1}{6}$
5
$=\frac{5}{6}$

$\frac{5}{6}-\frac{5}{12}=\frac{10}{12}-\frac{5}{12}$
$=\frac{5}{12}$

Pupils use their understanding of subtracting the same nouns when subtracting fractions with the same denominator. The subtraction of fractions or finding the difference between fractions is supported through pictorial representation. Pupils use their understanding of equivalence to ensure denominators are the same before carrying out the subtractions.

Year

Year 5 \begin{tabular}{c}

Subtracting
Decimals

$0.7-0.3=0.4$
\end{tabular}

Find the difference between $£ 3.40$ and $£ 2.50$.

Subtracting
Decimals
Using the
Formal Written
Method

The same procedure for subtracting decimals using a formal written method is the same as when subtracting whole numbers but attention needs to be given to the decimal point. The decimal point does not represent a place but separates the whole from the fractional part of a number. Careful alignment is needed when subtracting decimal numbers using a formal written method.

Pupils use their understanding of equivalence to subtract a decimal from a whole number. For example, when calculating $4-0.6$ we can rename 4 as 40 tenths, so the calculation becomes 40 tenths - 6 tenths. Once the nouns are the same, the subtraction can be carried out. 40 tenths -6 tenths $=$ 34 tenths $=3.4$

Subtraction Calculation Policy

Year 6

Year	Topic/Strand	Representation	Key Idea

First, carry out all the operations in ()
Next, perform all the multiplication and division.
Then, calculate all the addition and subtraction.
$\begin{aligned} 15-4 \times 3 & =15-12 \\ & =3\end{aligned}$
$(15-4) \times 3=11 \times 3$

Subtraction
within
Order of
Operations

First, do the subtraction in the (). Then multiply.

Year 6 Bar Models

[^0]Pupils utilise the previous subtraction skills within mixed operation equations. Subtraction is carried out after multiplication and division. If only addition and subtraction are present in an equation, pupils work from left to right.

Pupils are expected to utilise previously learned subtraction skills within increasingly complex situations. The procedure of subtraction is often at a level previously learned in isolation but the skill being developed is identifying when to use subtraction within a problem.

Year 1

Pupils learn to recognise groups that are equal in quantity, initially using like items and then progressing to different items.

Pupils understand that equal groups can be represented by concrete items, diagrams and written numbers

Pupils need to be secure in the abstraction principle of counting the quantity of items, regardless of the properties or characteristics of the items, in order to recognise equal groups in a range of situations.

Year 1
Repeated
Addition

Key Idea

There are 2 in each group Each group has an equal number of (3).
The balls are in equal groups.

Initially, multiplication is shown as the addition of equal groups. The key idea of adding like nouns still applies in multiplication. A group of 3 bananas and 3 apples does not result in 6 bananas or 6 apples. In order to add, the nouns must be the same, in this case 6 pieces of fruit. This is also true of multiplication: 2 groups of 3 pieces of fruit makes 6 pieces of fruit.

Year 1 Arrays

Multiplication is represented by arrays, beginning with making equal rows and further developing the language associated with arrays. For example: 'There are 3 rows of 5 . There are 15 altogether.

3 rows of 5
3 fives $=15$
There are 15 children altogether.

Number Line

As pupils become more fluent and their understanding of their times tables increases, they are expected to use this knowledge to calculate associated facts.

A pupil should be able to relate 10×5 to 9×5, knowing that the latter expression is 1 group of 5 less. So, $9 \times 5=50-5$.

Pupils learn that the order of the factors in an equation does not affect the product. This is supported pictorially through the use of arrays.

Year	Topic/Strand	Representation	Key Idea

Year 3
 Counting in
 $3 s, 4 s$ and $8 s$

When a pupil knows that the size of a group is 3 , 4 and 8 and the group size remains consistent, they can count in multiples of 3,4 and 8 to find the product. Counting in multiples is supported by representation on a number line.

Multiplication by 3,4 and 8 is shown initially using equal groups. Specific language is used to support these examples, in this case ' 4 groups of 3 ', and this is immediately followed by the equation 4×3. This forms the basis of using known facts to find unknown facts.

Counting in multiples is shown on a number line Multiples of 3,4 and 8 are used as the intervals on a number line to support skip counting using these multiples.

Year	Topic/Strand	Representation	Key Idea
Year 3	Associated Facts	$\begin{aligned} 4 \times 3 & =12 \\ 5 \times 3 & =12+3 \\ & =15 \end{aligned}$	Once the understanding of multiplication as the adding of equal groups is secure, this knowledge can be used to find unknown facts. For example, if a pupil knows 5×3 as 5 groups of 3, they can understand that 6×3 is simply 1 more group of 3 . So, $6 \times 3=15$ $+3 ; 4 \times 3$ is seen as 1 group fewer than $5 \times 3 ; 4 \times 3$ $=15-3$. This structure is used in all multiplication tables.
Year 3	Number Patterns		Pupils count in multiples of 3,4 or 8 to identify missing multiples in a sequence. This reinforces the products found within the 3,4 and 8 times tables.
Year 3	Commutativity	 ($+\infty$ d ((+ ((((() There are 5 rows of 8 mushrooms. $5 \times 8=40$ There are 8 rows of 5 mushrooms. $8 \times 5=40$ 5×8 is the same as 8×5. There are 40 mushrooms.	The representation of multiplication as an array is used to further develop the understanding of commutativity. Having first understood multiplication as [] groups of [], pupils develop an understanding that 5×3 can also be read as 5 multiplied 3 times. Pupils should have a firm understanding that the order the factors are multiplied in does not change the product.

Year 4

Fact Families

Multiplying

by 0 and 1

$30 \div 6=5$
$6 \times 5=30$
$6 \times 5=30$

3 pots of 1 ruler
$3 \times 1=3$

3 empty pots
$3 \times 0=0$

Fact families are used in the introduction of division, represented using arrays to show the relationship between factors and a product. Pupils relate 6 $\times 11=66$ to $66 \div 6=11$. They understand that multiplication can be used in division calculations.

Pupils initially use their understanding of 'groups of' to understand multiplying by zero. For example, 0×4 is read as 'There are zero groups of 4'.

Pupils' understanding then moves to read $0 \times$ 4 as zero multiplied 4 times. The language is an extension of what they have already learned about multiplication.

3×4 is equal to 4×3.

Year 4
Commutativity

$2 \times 3 \times 5=$

Arrays are used to support the understanding of commutativity. Pupils learn the pattern of $a \times b=b$ \times a. Regardless of the order in which the factors are multiplied, the product remains the same.

The commutative property is further developed through the multiplication of 3 numbers. 3 factors are multiplied in different orders and the product remains the same.

Key Idea

Pupils have already been working with factors for

2 rows of 12 tiles
$2 \times 12=24$
2 and 12 are factors of 24.

Factors are the numbers we multiply together to make another number. 2 and 12 are factors of 24 because $2 \times 12=24$.

This is a rectangle.

These are not rectangles.
There is only one way to arrange 17 cards.
$17=1 \times 17$
17 only has two factors, 1 and itself. 17 is a prime number.
a significant amount of time but the term 'factors' is introduced in Year 5. The structure for introducing factors uses rectangular arrangements and identifies the number of rows and number of items in each row.

Pupils' understanding of factors is further developed when looking at common factors. They learn that different numbers can share some of the same factors. Pupils may go on to generalise about common factors. For example, all integers that end in 0 or 5 have 5 as a common factor.

Following on from finding factors, pupils use rectangular arrangements to identify a pattern presented by prime numbers. Pupils find that prime numbers can only be arranged in a single rectangular pattern. This leads them to see that certain numbers only have two factors. These numbers, integers greater than 1 , are called prime numbers.

[^1]

Multiplication Calculation Policy

Year	Topic/Strand	Representation	Key Idea
Year 6	Order of Operations	First, carry out all the operations in (). Next, perform all the multiplication and division. Then, calculate all the addition and subtraction. $\begin{aligned} 15-4 \times 3 & =15-12 & (15-4) \times 3 & =11 \times 3 \\ & =3 & & =33 \end{aligned}$ Follow the order First, do the of operations. Multiply, subtraction in the (). then subtract. Then multiply.	Pupils use the multiplication skills they have learned in previous years within expressions and equations that use multiple operations. Pupils learn to multiply within brackets first, then left to right in expressions and equations that use multiplication. The procedures to multiply remain the same throughout.
Year 6	Multiplying by 2-Digit Numbers		Pupils revisit the formal written method, multiplying up to 4 -digit numbers by 2 -digit numbers.

돋ㄷㄷㄷㄷㄷㄷㄷㄷㄷㄷㄷ도들

1 row of 18 bags
$1 \times 18=18$

${ }^{\circ} C^{\circ} C^{\circ} C^{\circ} C^{\circ} C^{\circ}$

2 rows of 9 bags
$2 \times 9=18$

- \square

 cemor - \square —— $e^{\circ}{ }^{\circ}-C^{-}$ ampor comport \square

3 rows of 6 bags
$3 \times 6=18$

Prior learning is expanded on by finding common factors within more challenging word problems.

Pupils are encouraged to partition larger numbers into known multiples to determine if the given number is a factor

Multiples of 4	4	8	12	16	20	24	28	32	36	40	44	48
Multiples of 6	6	12	18	24	30	36	42	48	54	60	66	72
Multiples of 8	8	16	24	32	40	48	56	64	72	80	88	96

24 and 48 are common
multiples of 4,6 and 8 .

Pupils are introduced to common multiples with the understanding that they are a multiple of 2 or more numbers

Prime

Numbers

$8=5+3$

$10=7+3$

Can all even numbers be written as the sum of two prime numbers?

Pupils' understanding of prime numbers is expanded through the use of Goldbach's conjecture, that all even numbers greater than 2 can be expressed as the sum of two prime numbers.

$\frac{1}{3}$ of $\frac{1}{2} \mathrm{l}$ is $\frac{1}{6} \mathrm{l}$.

Multiplying

 Fractions
Multiplyin

$$
\begin{array}{r}
17 .{ }^{1} 23 \\
\times \quad \\
\hline 43.38 \\
\hline 4
\end{array}
$$

Pupils learn to multiply proper fractions by proper fractions. They read fractions to support multiplication, so
$\frac{1}{3} \times \frac{1}{5}$ is read as 'What is $\frac{1}{3}$ of $\frac{1}{5}$?'
Bar models are used to represent these problems pictorially.
Pupils progress to realise that the numerators can be multiplied and the denominators can be multiplied but before this procedure can be embedded, pupils must have a deep understanding of what the equation means.

Pupils use the same formal written method procedure as they have previously.
Pupils need to pay special attention to the places of the digits in the multiplication. It is important that they do not see the decimal point as a place but rather as a symbol used to separate the whole parts from the decimal parts of a mixed number.
-
Year
Topic/Strand

Equal Groups

Pupils learn to recognise groups that are equal in quantity, initially using like items and then progressing to different items.
Pupils understand that equal groups can be

Sam has 12 apples.

He puts the apples into groups of 4

How many groups does he make?
Sam makesgroups.

Key Idea

represented by concrete items, diagrams and written numbers.

Pupils need to be secure in the abstraction principle of counting the quantity of items regardless of the items' properties or characteristics, in order to recognise equal groups in a range of situations.

Pupils initially use grouping for division. They put items into equal groups to find the number of equal groups that can be made from a set amount.

Year	Topic/Strand	Representation	Key Idea

Year 1 Sharing
10 medals are shared equally among 5 friends.

Each friend gets 2 medals.

Pupils move from division through grouping to division through sharing. They share a set amount of items equally between a number of groups. The number of groups is known and pupils find the number of items in each group.

Pupils start to count in multiples of 2 and multiples of 10 , then progress to counting in multiples of 2,5 and
10 supported by discrete, countable representations.

Division Calculation Policy

Year 2

Key Idea

There are 16 bagels. Divide 16 by 2 to find the number of groups.

I put 2 bagels in each box There are 8 groups of 2 .

There are 16 flowers.
Elliott cuts the flowers and puts them equally into 2 vases.

There are 8 flowers in each vase.
$16 \div 2=8$

Pupils initially use grouping for division. They put items into equal groups to find the number of equal groups that can be made from a set amount.

Year 2
Sharing

Pupils move from division through grouping to division through sharing. They share a set amount of items equally between a number of groups The number of groups is known and pupils find the number of items in each group.

20 children can be put into teams of 10 .

Year 2
Division by 2, 5
and 10

Pupils start to make the connection between division and multiplication. They see amounts as equal groups and relate this to multiplication.

Year $2 \quad$| Odd and |
| :--- |
| Even Numbers |

Pupils develop an understanding that even numbers can be put into groups of 2 exactly. Numbers that can be put into groups of 2 and have 1 remaining are described as odd numbers.

Division Calculation Policy

Year	Topic/Strand	Representation	
Year 3	Dividing by 3 , 4 and 8	Sam put 32 cobs of corn into 4 equal groups.	4 groups
			f 8 is 32.
			$4 \times 8=32$
		$32 \div 4=8$ Each group has 8 cobs of corn.	

Pupils are introduced to the division of numbers by 3 , 4 and 8 using grouping initially. They make groups of 3,4 and 8 and then move on to sharing a total.

Amira and Ruby are making pizzas.
They have 12 olives.
They want to put 3 or 4 olives on each pizza. Can we make a family of multiplication and division equations to help them?

Pupils extend their understanding of division by relating the division facts to multiplication facts, creating a multiplication and division fact family. Word problems get increasingly more complex and bar models are used to represent problems involving division.

Division Calculation Policy

Year 4

Year	Topic/Strand	Representation	Key Idea

Pupils are given division word problems and immediately relate the division used to solve the problem to the multiplication fact they have previously learned. The language associated with division is given, with pupils understanding that when the number is divided, the outcome is called the quotient.

Arrays and bar models are used to show the relationship between multiplication and division when learning to multiply and divide by 11 and 12 , building on the relationship already learned when dividing by 6,7 and 9 .
Year 4 There are 13 flowers.

Dividing with
Remainders

$13 \div 3=4$ with 1 left over
The quotient is 4.
The remainder is 1.

Pupils learn that when dividing into equal groups, we can be left with a number of items less than the group size. This is introduced as the remainder. Initially, the remainder is shown as a whole number.

The quotient is 4 .
The remainder is 1 .

Division word problems are supported by the use of arrays and bar models, reinforcing the idea of equal groups. Pupils relate the representations of the problems to the equations given. Comparison division models are also used to determine amounts when two separate amounts are compared

Dividing 2-Digit
Numbers

Step 1 Divide 4 tens by 2.

$$
4 \text { tens } \div 2=2 \text { tens }
$$

$$
40 \div 2=20
$$

6 ones $\div 2=3$ ones
$6 \div 2=3$
$46 \div 2=23$
$306 \div 3=$

Pupils initially use place-value counters to support the division of 2-digit numbers, then move on to use a long formal written method. The long written method shows the systematic division of parts of the dividend resulting in the quotient.

The same procedure used for dividing 2-digit numbers is used for dividing 3-digit numbers. Placevalue counters are used to represent the problem before moving on to use the long formal written method.

Year	Topic/Strand	Representation	Key Idea

Finding
Multiples

3 rows of 8 tiles
$3 \times 8=24$

4 rows of 8
stamps.
$4 \times 8=32$

Pupils use arrays to recognise multiples as the total number once a number is multiplied by another number. Skip counting is related to multiples as it is shown on a number line. Pupils also look for patterns when identifying multiples on number squares.

The same rectangular arrangement that was used to find multiples is used to identify factors. The pictorial representation leads to an understanding that factors are the numbers we multiply to produce a product.

Pupils learn that when multiple numbers share the same factors, we can describe those factors as common factors. Pupils will begin to generalise about common factors. For example, all whole numbers ending in zero will have 5 as a multiple.

Prime and

This is a rectangle.

These are not rectangles.
There is only one way to arrange 17 cards.
$17=1 \times 17$
17 only has two factors, 1 and itself. 17 is a prime number.

Pupils use their understanding of rectangular arrays to look for prime numbers. They learn that any number that can only be made into a single rectangular array is a prime number. In describing this array, they make the connection that prime numbers only ever have two factors, itself and 1 They also learn that numbers with two or more factors can be described as composite numbers

How many groups of 1000 can we make from 3564 ?
10001100011000

Look at the digit in the thousands place.

Place-value counters and numbers bonds are initially used to represent division problems involving dividing by 10,100 and 1000 .

Pupils use their understanding of place value to support the division calculations. For example, 35 hundreds $\div 1$ hundred $=35$.

Dividing without

Pupils use place-value counters and number bond diagrams to support their understanding of the long formal written method for division. Pupils are shown how numbers can be partitioned into known multiples before carrying out the division.

The same procedure used for dividing without a remainder is used for dividing with a remainder but once pupils have made the maximum possible number of equal groups, they have a quantity remaining that is less than the equal group size This is the remainder. Initially, the remainder is shown as a whole number. This progresses to showing the remainder as a fraction. This progression is supported pictorially with a bar model. Pupils should also start to become aware that the representation of the remainder will be determined by the context of the problem.

Division Calculation Policy

The process used when dividing by a 2-digit number without a remainder stays the same when dividing with remainders. The process results in remainders that cannot be put into the equal group size as whole numbers. The context of the problem suggests the form that the remainder will take and pupils decide on the best representation for the remainder depending on the context.

Pupils also use a unitary method of division to solve more complex word problems. Within these problems, they also use brackets to show the partitioning of numbers and how this can be used to support calculation in division problems.

Pupils work systematically through problems looking for common multiples of given numbers.
Common 6 Factors
Year
F

Pupils use long division to find common factors of given numbers. The method used to find common factors progresses to arrays and using tables to systematically find possible common factors.

Arrays are used as they have been previously, looking for rectangular patterns. Pupils see that numbers that can only be made into 1 rectangular arrangement are prime numbers with factors of itself and 1.

Dividing

Fractions by
Whole Numbers

$\frac{3}{4} \div 4=\frac{1}{4} \times \frac{3}{4}=\frac{3}{16}$

Pupils relate dividing fractions by a whole number to multiplying by its reciprocal. So, dividing by 4
is related to multiplying by $\frac{1}{4}$. We also read this as ' $\frac{1}{4}$ of'. The procedure of dividing fractions
by whole numbers is supported by the use of bar models and pictorial representation.

Dividing
Decimals
without
Renaming

Initially, place-value counters are used to show the division procedure that should be well known by pupils at this stage. The long formal written method is then used to divide decimal numbers without renaming the dividend. The procedure for long division does not change. Pupils need to be mindful of the placement of the digits and remember that the decimal point does not represent a place. Simply, the decimal point separates the whole and fractional parts of a number.

Dividing
Decimals
with Renaming

Initially, place-value counters are used to show the division procedure that should be well known by pupils at this stage. The long formal written method is then used to divide decimal numbers without a remainder. The procedure for long division with renaming does not change from what pupils have experienced previously. Pupils need to be mindful of the placement of the digits and remember that the decimal point does not represent a place. Simply, the decimal point separates the whole and fractional parts of a number.

Pupils initially divide decimal numbers by 2-digit whole numbers where the dividend is easily broken into multiples of the divisor. Number bonds demonstrate the partitioning in order to divide using long and short formal written methods of division.

Year 6
Algebra

There are 9 parts in total. Divide 1890 by 9 determine quantities in ratio problems. This approach is supported by the use of bar models.

Pupils use their understanding of division to determine unknown values with algebraic expressions and equations.

[^0]: $\cdots=£ 40-£ 20$

[^1]: Year
 Topic/Strand

 Pupils use formal written methods, short and long, to multiply a 3-digit number by a 1-digit number; then move on to multiply a 4-digit number by a 1-digit number.

 Initially the long method is used, showing the produc as a result of multiplying each place. Pupils then progress to the short formal written method making a link between the two procedures.

 Next, pupils learn to multiply a 2-digit number by a 2-digit number, then a 3-digit number by a 2 -digit number.

 Links are made to the formal written procedure that they know. Pupils work systematically through the procedure progressing from multiplying by ones to multiplying by tens and ones.

